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The development of advanced catalysts for the Oxygen Reduction Reaction (ORR) is critical for improving
the performance and efficiency of Polymer Electrolyte Fuel Cells (PEFCs). However, the vast and growing body
of scientific literature poses challenges for researchers aiming to identify key insights. This study focuses on the
information extraction of ORR catalysts from fuel cell-related literature using a hybrid approach combining manual
annotation and automated machine learning techniques. A comprehensive dataset was constructed through the
Brat annotation tool, identifying 12 critical entities such as catalyst, support, and value, alongside two relationship
types: equivalent and related_to. The annotated data was used to fine-tune the DyGIE++ framework with the
pre-trained BERT models. The model demonstrated effective performance in extracting complex material science
concepts and their interrelationships. The finding suggests that this automated framework can accelerate catalyst
discovery by providing structured, high-quality data for downstream analysis. This research highlights the potential
of Natural Language Processing (NLP) in enabling efficient literature mining and fostering advancements in clean

energy techniques.

1. Introduction

The oxygen reduction reaction (ORR) plays a crucial role
in the performance of fuel cells, as it directly impacts ef-
ficiency and durability. ORR catalysts, particularly those
based on platinum-group metals and their alternatives, have
been extensively studied to enhance catalytic activity and
stability. Given the rapid growth of fuel cell research, a vast
amount of scientific literature has been published, present-
ing valuable insights into catalyst compositions, structures,
and performance metrics. However, manually extracting
and analyzing this information from numerous articles is
time-consuming and inefficient.

One of the main challenges in extracting ORR cata-
lyst information is the complexity and diversity of scien-
tific text. Research papers contain unstructured data, in-
cluding chemical formulas, experimental conditions, and
performance results, which are often scattered across dif-
ferent sections. Additionally, critical information is fre-
quently embedded in tables, figures, and mathematical ex-
pressions, making automated extraction even more diffi-
cult. Named Entity Recognition (NER) and Relation Ex-
traction (RE) techniques, powered by Natural Language
Processing (NLP), provide a promising solution by iden-
tifying key entities and their relationships within texts
[Yamaguchi 22, Mitsui 23].

In this study, we develop a web-based system that inte-
grates data collection, annotation, and extraction features,
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as shown in Figure 1, for ORR catalyst information extrac-
tion. Specifically, we apply DyGIE++ [Luan 19], a deep
learning framework designed for joint NER and RE tasks.
Our approach structures the extracted data efficiently, en-
abling further analysis in catalyst research. Experimental
results demonstrate the effectiveness of our methodology in
extracting catalyst-related entities and relations, contribut-
ing to more accessible and automated knowledge retrieval
in fuel cell research.

2. Proposed Method

In this section, we describe the proposed method for col-
lecting, annotating, integrating, and modeling data related
to ORR catalysts for fuel cells.

2.1 Data Collection

This study accessed literature from the Royal Society of
Chemistry (RSC) through institutional access provided by
Nagoya University and followed the applicable terms of use
for text mining. We collected full-text articles through a de-
veloped web-based platform, which accessed RSC database
[Antony 14] from 2010 to 2024. To retrieve relevant arti-
cles, we used the following query: ORR AND Catalyst AND
(ECSA OR “mass activity” OR “ORR activity” OR “sur-
face activity”). Here, ECSA represents Electro Chemical
Surface Area.

This search identified a total of 1,259 articles. From these,
we focused only on three key sections: Abstract, Results
& Discussion, and Conclusions, as they contain the most
essential information. In this study, the articles were then
ranked based on the highest occurrences of mass activity
and ORR activity. Through this process, 76 articles were
selected as representative studies in ORR catalyst research
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Figure 1: System overview: web-based ORR catalyst data collection and analysis.

for fuel cells and subsequently used for data annotation.

2.2 Annotation Design

For the annotation process, we identified 12 entities
grouped into three main categories, reflecting the typical
components involved in ORR catalyst research.

This category includes seven material
types: 1. Catalyst (Cat.), 2. Support (Supp.), 3.
Additive (Add.), 4. Electrolyte (Elect.), 5. Precur-
sors (Prec.), 6. Other Material (Other), 7. Material
Reference (Mat.).

e Material Characteristics: Covering three aspects:
8. Property (Prop.), 9. Structure (Struct.), 10. Pro-
cess (Proc.).

e Materials:

e Experimental Parameters Encompassing two key
parameters: 11. Condition (Cond.), 12. Value (Val.).

In addition, we identified two types of relationships based
on interactions between these entities:

(1) equivalent — links entities that represent the same
concept or material

(2) related_to — captures connections between entities
that share a significant association

material*‘»

related_to

equivalent

<-----» equivalent

— related_to

Figure 2: Entity-Relation map.

2.3 Data Annotation

From the 76 articles, three key sections— Abstract, Re-
sults € Discussion, and Conclusions—were extracted and
processed following the defined 12 entities and 2 relations,
as shown in Figure 2.

(1) Automated Pre-Annotation: To expedite the an-
notation process, default annotations in Brat format are
automatically generated using a combination of Chemical

Data FEztractor (CDE)’s parser [Mavraci¢ 21] and custom-
created parsers. It assists in identifying key entities and
their relations, reducing the manual workload.

(2) Refine Annotation: The three workers then review,
refine, and validate the pre-annotations using the Brat an-
notation tool [Stenetorp 12]. This tool is hosted on a cen-
tralized web-based platform, eliminating the need for local
installation. Annotators can seamlessly access and modify
annotations through the platform, ensuring consistency and

accuracy in data labeling.platform.

2.4 Data Integration & Modeling

The data integration and modeling process involved con-
verting the annotated text into a structured machine-
readable format suitable for model training. The steps fol-
lowed include:

(1) Relation Filtering:
identified and removed to ensure consistency and accuracy

Invalid cross-relations were

in tokenization.

(2) Format Conversion: Brat annotations were con-
verted into a JSON format, ensuring compatibility with the
DyGIE++ framework. This conversion facilitates seamless
integration into the model pipeline.

(3) Document Splitting: To prevent CUDA out-of-
memory errors, large documents were split into smaller seg-
ments. This ensures the model can process each document
efficiently without exceeding memory limits during training.

(4) Dataset Structuring: The annotated and pre-
processed data was organized into distinct training, vali-
dation, and test sets. These sets were then used to evaluate
the performance of the model.

(5) Modeling: Several domain-specific pre-trained
BERT-based models, such as SciBERT [Beltagy 19], and
MatSciBERT [Gupta 22], were fine-tuned on our annotated
dataset. Finally, the models’ performance were evaluated
using precision, recall, and F1-score metrics on the test sets.

.. TP
Precision = W, (1)
TP
l=—— 2
Reca TP L EN (2)

2 x Precision x Recall

Fi1- =
seore Precision + Recall
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where:
e TP = Number of true positives (correct annota-
tions/extractions)
e FP = Number of false positives (incorrect annota-
tions/extractions)
e FFN = Number of false negatives (missed annota-
tions/extractions)

3. Data Extraction

Data extraction involved applying trained models to iden-
tify and retrieve relevant information from fuel cell-related
scientific literature. The extraction process was facilitated
through the developed web platform, which provides an in-
tuitive interface for users. As shown in Figure 3, the user
simply needs to select the trained model of choice, then
input the text or upload an article file. Once the article
was provided, the model performed the extraction process,
identifying key entities and relationships.

Select custom trained model  [MECS"F]

A novel three-dimensional (3D) electrocatalyst composite was successfully prepared through a facile hydrothermal
method, consisting of tungsten nitride nanosheets with flower-like morphology (WN FNs) and nitrogen-doped carbon black

(N-C). Highly crystalline WN FNs were observed to be uniformly distributed in N-C, and remarkably promoted the
catalytic activities toward oxygen reduction reaction (ORR) of the N-C. Moreover, the electrochemical results proved
that, WN FNs/N-C composite shows a significantly higher ORR activity with a 4-electron transfer pathway and limiting
current density of 5.8 mA cm-2 in alkaline solutions. The stability test of the nanocomposite showed less degradation
after 5 h and its methanol tolerance also was enhanced compared with Pt/C. The improved performance of the WN FNs/N-C
composite can be attributed to its unique configuration and the increased exposure of active sites, which suggests
that it could serve as an ideal candidate for developing high performance ORR catalysts.

Figure 3: Model selection & input data for extraction.

The extracted results were presented in two formats for
user convenience: (1) Brat Visualization: (See Figure 4),
and (2) Graph Visualization:(See Figure 5).

A novel th (3D) \posite was prepared through a facile hydrothermal method,

reated o
e

consisting of tungsten nitride  nanosheets with flower-like morphology (WN FNs) and nitrogen-doped carbon black (N-C).

-‘e‘m‘i'w\_’"‘am”m\‘zﬂt};—m)“d’m “{Property) Value)
Highly crystalline WN FNs were observed to be uniformly distributed in N—C, and remarkably promoted the
catalytic activities toward oxygen reduction reaction (ORR) of the N-C.

related_to

o
Moreover, the electrochemical results proved that, WN FNs/N-C composite shows a significantly higher ORR activity with a
relsted s
m——
retted o — gy relate o

Z-electron transfer pathway and limiting current density of 5.8 mA cm—2 in alkaline solutions.

- related_to- related_to.
B . we) @ i T Nawe
The stability test of the nanocomposite showed less degradation after 5h and its methanol tolerance also was enhanced
compared with PUC.

-‘velaled_m\———relaled_m X
The improved performance of the WN FNs/N-C composite can be attributed to its unique configuration and the

increased exposure of active sites, which suggests that it could serve as an ideal candidate for developing high performance
(ORR catalysts.

Figure 4: Extracted data in Brat visualization.

4. Evaluations

In this section, we present the performance evaluation of
our trained models on ORR catalyst-related scientific liter-
ature. A total of 76 articles were annotated, resulting in 554
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Figure 5: Extracted data in graph visualization.

documents in the fuel-cell dataset. The dataset was split
into training (80%), validation (10%), and testing (10%)
sets. In addition to the standard test set, we included a
Gold Standard (Gold Std.) dataset, which was created by
three experts in our group as a benchmark dataset.

4.1 Performance of NER and RE Models

We fine-tuned our fuel-cell dataset on seven different
pre-trained BERT-based models, generating seven special-
ized models: Model-1 (SciBERT), Model-2 (MatSciBERT-
1), Model-3 (MatSciBERT-2), Model-4 (MatSciBERT-
3), Model-5 (PubMedBERT), Model-6 (BlueBERT), and
Model-7 (BioBERT).

As shown in Figure 6, Model-1 and Model-5 achieved the
highest NER F1l-score of 82.19%, while Model-2 obtained
the highest RE Fl-score of 66.10% on the Gold Standard
test set. Overall, the NER Fl-score ranged from 61.66%
to 82.19%, while the RE Fl-score ranged from 51.27% to
66.10% across the valid, test, and Gold Standard sets.
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Figure 6: Fl-score of valid, test, and gold standard.
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4.2 Annotators vs. Model Performance

To establish a benchmark for evaluating model perfor-
mance, we assessed human annotators using standard met-
rics, as described in Section 2.4. This evaluation provided
a reliable reference for comparison.

For a fair evaluation, we compared both human annota-
tors and model-generated extractions using the Gold Stan-
dard dataset. This dataset comprises expert-verified anno-
tations, making it the most dependable resource for assess-
ing extraction accuracy between annotators and models.

In the annotator evaluation, three annotators were given
the same article used to construct the Gold Standard
dataset, and their performance was measured based on the
defined metrics.

For the model evaluation, we selected the three highest-
performing trained models and applied them to the same ar-
ticle. Their performance was assessed using the DyGIE++
evaluation metrics.

By ensuring identical evaluation conditions, we con-
ducted a direct and objective comparison between human
annotators and models. Figure 7 presented the NER and
The differ-
ence in NER performance between annotators and models

RE Fl-scores of both annotators and models.

was minimal, demonstrating strong model reliability. How-
ever, for RE, the models exhibited a significant decline in
F1-score compared to annotators, indicating that relation
extraction remains a more challenging task for models.

S

F1-score

Annotator-1 Annotator-2 Annotator-3  Model-2 Model-4 Model-5

—#-NER —4—RE

Figure 7: Fl-score of annotators and models

5.

This study presents a hybrid approach that combines

Conclusion

manual annotation with automated machine learning tech-
niques to extract structured information on ORR catalysts
from scientific literature. By automating literature mining,
researchers can efficiently identify promising materials and
synthesis techniques, significantly reducing the time and ef-
fort required for manual analysis. This acceleration has the
potential to drive faster innovation and facilitate the de-
velopment of more efficient and sustainable ORR catalysts
for fuel cells, contributing to advancements in clean energy
technologies.

Our models demonstrated effective performance in fuel-
cell literature extraction, particularly for NER. However,
improvements are still needed for RE to achieve higher ac-
curacy and reliability.

As future work, we aim to enhance our model’s perfor-
mance, especially in relation extraction, and develop an es-
sential model for ORR catalyst development based on the
extracted knowledge.
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