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The development of advanced catalysts for the Oxygen Reduction Reaction (ORR) is critical for improving

the performance and efficiency of Polymer Electrolyte Fuel Cells (PEFCs). However, the vast and growing body

of scientific literature poses challenges for researchers aiming to identify key insights. This study focuses on the

information extraction of ORR catalysts from fuel cell-related literature using a hybrid approach combining manual

annotation and automated machine learning techniques. A comprehensive dataset was constructed through the

Brat annotation tool, identifying 12 critical entities such as catalyst, support, and value, alongside two relationship

types: equivalent and related to. The annotated data was used to fine-tune the DyGIE++ framework with the

pre-trained BERT models. The model demonstrated effective performance in extracting complex material science

concepts and their interrelationships. The finding suggests that this automated framework can accelerate catalyst

discovery by providing structured, high-quality data for downstream analysis. This research highlights the potential

of Natural Language Processing (NLP) in enabling efficient literature mining and fostering advancements in clean

energy techniques.

1. Introduction

The oxygen reduction reaction (ORR) plays a crucial role

in the performance of fuel cells, as it directly impacts ef-

ficiency and durability. ORR catalysts, particularly those

based on platinum-group metals and their alternatives, have

been extensively studied to enhance catalytic activity and

stability. Given the rapid growth of fuel cell research, a vast

amount of scientific literature has been published, present-

ing valuable insights into catalyst compositions, structures,

and performance metrics. However, manually extracting

and analyzing this information from numerous articles is

time-consuming and inefficient.

One of the main challenges in extracting ORR cata-

lyst information is the complexity and diversity of scien-

tific text. Research papers contain unstructured data, in-

cluding chemical formulas, experimental conditions, and

performance results, which are often scattered across dif-

ferent sections. Additionally, critical information is fre-

quently embedded in tables, figures, and mathematical ex-

pressions, making automated extraction even more diffi-

cult. Named Entity Recognition (NER) and Relation Ex-

traction (RE) techniques, powered by Natural Language

Processing (NLP), provide a promising solution by iden-

tifying key entities and their relationships within texts

[Yamaguchi 22, Mitsui 23].

In this study, we develop a web-based system that inte-

grates data collection, annotation, and extraction features,
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as shown in Figure 1, for ORR catalyst information extrac-

tion. Specifically, we apply DyGIE++ [Luan 19], a deep

learning framework designed for joint NER and RE tasks.

Our approach structures the extracted data efficiently, en-

abling further analysis in catalyst research. Experimental

results demonstrate the effectiveness of our methodology in

extracting catalyst-related entities and relations, contribut-

ing to more accessible and automated knowledge retrieval

in fuel cell research.

2. Proposed Method

In this section, we describe the proposed method for col-

lecting, annotating, integrating, and modeling data related

to ORR catalysts for fuel cells.

2.1 Data Collection
This study accessed literature from the Royal Society of

Chemistry (RSC) through institutional access provided by

Nagoya University and followed the applicable terms of use

for text mining. We collected full-text articles through a de-

veloped web-based platform, which accessed RSC database

[Antony 14] from 2010 to 2024. To retrieve relevant arti-

cles, we used the following query: ORR AND Catalyst AND

(ECSA OR “mass activity” OR “ORR activity” OR “sur-

face activity”). Here, ECSA represents Electro Chemical

Surface Area.

This search identified a total of 1,259 articles. From these,

we focused only on three key sections: Abstract, Results

& Discussion, and Conclusions, as they contain the most

essential information. In this study, the articles were then

ranked based on the highest occurrences of mass activity

and ORR activity. Through this process, 76 articles were

selected as representative studies in ORR catalyst research

1

  

The 39th Annual Conference of the Japanese Society for Artificial Intelligence, 2025

3K5-IS-2b-03



Figure 1: System overview: web-based ORR catalyst data collection and analysis.

for fuel cells and subsequently used for data annotation.

2.2 Annotation Design
For the annotation process, we identified 12 entities

grouped into three main categories, reflecting the typical

components involved in ORR catalyst research.

• Materials: This category includes seven material

types: 1. Catalyst (Cat.), 2. Support (Supp.), 3.

Additive (Add.), 4. Electrolyte (Elect.), 5. Precur-

sors (Prec.), 6. Other Material (Other), 7. Material

Reference (Mat.).

• Material Characteristics: Covering three aspects:

8. Property (Prop.), 9. Structure (Struct.), 10. Pro-

cess (Proc.).

• Experimental Parameters Encompassing two key

parameters: 11. Condition (Cond.), 12. Value (Val.).

In addition, we identified two types of relationships based

on interactions between these entities:

(1) equivalent — links entities that represent the same

concept or material

(2) related to — captures connections between entities

that share a significant association

Figure 2: Entity-Relation map.

2.3 Data Annotation
From the 76 articles, three key sections— Abstract, Re-

sults & Discussion, and Conclusions—were extracted and

processed following the defined 12 entities and 2 relations,

as shown in Figure 2.

(1) Automated Pre-Annotation: To expedite the an-

notation process, default annotations in Brat format are

automatically generated using a combination of Chemical

Data Extractor (CDE)’s parser [Mavračić 21] and custom-

created parsers. It assists in identifying key entities and

their relations, reducing the manual workload.

(2) Refine Annotation: The three workers then review,

refine, and validate the pre-annotations using the Brat an-

notation tool [Stenetorp 12]. This tool is hosted on a cen-

tralized web-based platform, eliminating the need for local

installation. Annotators can seamlessly access and modify

annotations through the platform, ensuring consistency and

accuracy in data labeling.platform.

2.4 Data Integration & Modeling
The data integration and modeling process involved con-

verting the annotated text into a structured machine-

readable format suitable for model training. The steps fol-

lowed include:

(1) Relation Filtering: Invalid cross-relations were

identified and removed to ensure consistency and accuracy

in tokenization.

(2) Format Conversion: Brat annotations were con-

verted into a JSON format, ensuring compatibility with the

DyGIE++ framework. This conversion facilitates seamless

integration into the model pipeline.

(3) Document Splitting: To prevent CUDA out-of-

memory errors, large documents were split into smaller seg-

ments. This ensures the model can process each document

efficiently without exceeding memory limits during training.

(4) Dataset Structuring: The annotated and pre-

processed data was organized into distinct training, vali-

dation, and test sets. These sets were then used to evaluate

the performance of the model.

(5) Modeling: Several domain-specific pre-trained

BERT-based models, such as SciBERT [Beltagy 19], and

MatSciBERT [Gupta 22], were fine-tuned on our annotated

dataset. Finally, the models’ performance were evaluated

using precision, recall, and F1-score metrics on the test sets.

Precision =
TP

TP + FP
, (1)

Recall =
TP

TP + FN
(2)

F1-score =
2× Precision× Recall

Precision + Recall
(3)
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where:

• TP = Number of true positives (correct annota-

tions/extractions)

• FP = Number of false positives (incorrect annota-

tions/extractions)

• FN = Number of false negatives (missed annota-

tions/extractions)

3. Data Extraction

Data extraction involved applying trained models to iden-

tify and retrieve relevant information from fuel cell-related

scientific literature. The extraction process was facilitated

through the developed web platform, which provides an in-

tuitive interface for users. As shown in Figure 3, the user

simply needs to select the trained model of choice, then

input the text or upload an article file. Once the article

was provided, the model performed the extraction process,

identifying key entities and relationships.

Figure 3: Model selection & input data for extraction.

The extracted results were presented in two formats for

user convenience: (1) Brat Visualization: (See Figure 4),

and (2) Graph Visualization:(See Figure 5).

Figure 4: Extracted data in Brat visualization.

4. Evaluations

In this section, we present the performance evaluation of

our trained models on ORR catalyst-related scientific liter-

ature. A total of 76 articles were annotated, resulting in 554

Figure 5: Extracted data in graph visualization.

documents in the fuel-cell dataset. The dataset was split

into training (80%), validation (10%), and testing (10%)

sets. In addition to the standard test set, we included a

Gold Standard (Gold Std.) dataset, which was created by

three experts in our group as a benchmark dataset.

4.1 Performance of NER and RE Models
We fine-tuned our fuel-cell dataset on seven different

pre-trained BERT-based models, generating seven special-

ized models: Model-1 (SciBERT), Model-2 (MatSciBERT-

1), Model-3 (MatSciBERT-2), Model-4 (MatSciBERT-

3), Model-5 (PubMedBERT), Model-6 (BlueBERT), and

Model-7 (BioBERT).

As shown in Figure 6, Model-1 and Model-5 achieved the

highest NER F1-score of 82.19%, while Model-2 obtained

the highest RE F1-score of 66.10% on the Gold Standard

test set. Overall, the NER F1-score ranged from 61.66%

to 82.19%, while the RE F1-score ranged from 51.27% to

66.10% across the valid, test, and Gold Standard sets.

Figure 6: F1-score of valid, test, and gold standard.
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4.2 Annotators vs. Model Performance
To establish a benchmark for evaluating model perfor-

mance, we assessed human annotators using standard met-

rics, as described in Section 2.4. This evaluation provided

a reliable reference for comparison.

For a fair evaluation, we compared both human annota-

tors and model-generated extractions using the Gold Stan-

dard dataset. This dataset comprises expert-verified anno-

tations, making it the most dependable resource for assess-

ing extraction accuracy between annotators and models.

In the annotator evaluation, three annotators were given

the same article used to construct the Gold Standard

dataset, and their performance was measured based on the

defined metrics.

For the model evaluation, we selected the three highest-

performing trained models and applied them to the same ar-

ticle. Their performance was assessed using the DyGIE++

evaluation metrics.

By ensuring identical evaluation conditions, we con-

ducted a direct and objective comparison between human

annotators and models. Figure 7 presented the NER and

RE F1-scores of both annotators and models. The differ-

ence in NER performance between annotators and models

was minimal, demonstrating strong model reliability. How-

ever, for RE, the models exhibited a significant decline in

F1-score compared to annotators, indicating that relation

extraction remains a more challenging task for models.

Figure 7: F1-score of annotators and models

5. Conclusion

This study presents a hybrid approach that combines

manual annotation with automated machine learning tech-

niques to extract structured information on ORR catalysts

from scientific literature. By automating literature mining,

researchers can efficiently identify promising materials and

synthesis techniques, significantly reducing the time and ef-

fort required for manual analysis. This acceleration has the

potential to drive faster innovation and facilitate the de-

velopment of more efficient and sustainable ORR catalysts

for fuel cells, contributing to advancements in clean energy

technologies.

Our models demonstrated effective performance in fuel-

cell literature extraction, particularly for NER. However,

improvements are still needed for RE to achieve higher ac-

curacy and reliability.

As future work, we aim to enhance our model’s perfor-

mance, especially in relation extraction, and develop an es-

sential model for ORR catalyst development based on the

extracted knowledge.
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